Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

William T. A. Harrison, ${ }^{\text {a }}{ }^{*}$

H. S. Yathirajan, ${ }^{\text {b }}$
B. V. Ashalatha, ${ }^{\text {c }}$ S. Bindya ${ }^{\text {d }}$ and B. Narayana ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, ${ }^{\mathbf{b}}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ${ }^{\text {º Department of Chemistry, }}$ Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Chemistry, Sri Jayachamarajendra College of Engineering, Mysore 570 006, India

Correspondence e-mail:

w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.023$
$w R$ factor $=0.056$
Data-to-parameter ratio $=16.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(2E)-1-(3-Bromo-2-thienyl)-3-(4-methoxy-phenyl)prop-2-en-1-one

The molecules of the title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \mathrm{~S}$, display some distorted geometrical values that may be ascribed to an $\mathrm{H} \cdots \mathrm{Br}$ close contact. In the crystal structure, the molecules form translation-symmetry-generated infinite chains by way of a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction.

Comment

Chalcones and their heterocyclic derivatives show numerous biological effects (Opletalova \& Sedivy, 1999). As part of our ongoing studies of these types of chalcones (Harrison et al., 2006; Yathirajan et al., 2006), the synthesis and structure of the title compound, (I) (Fig. 1), are presented here.

(I)

The bond lengths and angles in (I) mostly fall within their expected ranges (Cambridge Structural Database, Version 5.27; Allen, 2002). The terminal C14 methyl group is almost coplanar with its adjacent C 8 -C13 benzene ring mean plane [deviation of $\mathrm{C} 14=0.015(5) \AA$]. The dihedral angle between the $\mathrm{C} 8-\mathrm{C} 13$ benzene ring and $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{S} 1$ thiophene ring is 19.58 (9). The $\mathrm{C} 5=\mathrm{O} 1$ carbonyl group is also twisted with respect to the heterocycle, as reflected in the $\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5-$ O1 and C3-C4-C5-O1 torsion angles of -15.9 (3) and $164.0(3)^{\circ}$, respectively.

The $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ angle of $135.8(2)^{\circ}$ is far more obtuse than the $\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$ angle of $114.52(18)^{\circ}$, possibly as a result of a close intramolecular contact between Br 1 and H 6 (attached to C6): the separation of these atoms in (I) is $2.73 \AA$ compared to the expected Bondi (1964) van der Waals separation of $3.05 \AA$. We presume that this represents a steric repulsion between Br and H rather than a $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ 'bond'. The difference between the $\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 1$ and $\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$ bond angles [126.74 (18) and $119.08(18)^{\circ}$, respectively] might also reflect this repulsive contact. Similar angular distortions have been seen in other 4-bromothiophenes such as 4-(4-bromo-5-methylthiophen-2-yl)pyridine (Xu et al., 2005) and 3,4'-dibromo-2,2'-bithiophene (Antolini et al., 1997).

The crystal packing in (I) is consolidated by $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{i}$ interactions (Table 1) that link the molecules into chains propagating in [001]. A slightly short $\mathrm{Br} 1 \cdots \mathrm{O} 2^{\mathrm{ii}}$ [symmetry code: (ii) $\left.1-x, \frac{1}{2}+y, 1-z\right]$ contact of 3.2184 (18) \AA arises; the expected Bondi separation is $3.37 \AA$.

Experimental

3-Bromo-2-acetylthiophene ($10 \mathrm{~g}, 0.048 \mathrm{~mol}$) in methanol (50 ml) was mixed with 4-methoxybenzaldehyde ($6.52 \mathrm{~g}, 0.048 \mathrm{~mol}$) and the mixture was treated with 10 ml of 30% potassium hydroxide solution at 278 K . The reaction mixture was then brought to room temperature and stirred for 3 h . The precipitated solid was filtered and washed with water, dried and recrytallized from acetone to yield light yellow crystals of (I) (yield 80%; m.p. 383 K).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2} \mathrm{~S}$
$M_{r}=323.20$
Monoclinic, $P 2_{\text {t }}$
$a=4.0025$ (1) A
$b=10.7048(3) \AA$
$c=14.6451(5) \AA$
$\beta=91.789(2)^{\circ}$
$V=627.18(3) \AA^{3}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.388, T_{\text {max }}=0.795$

$Z=2$

$D_{x}=1.711 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=3.43 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Slab, yellow
$0.34 \times 0.18 \times 0.07 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.056$
$S=1.08$
2705 reflections
165 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+0.0736 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

Figure 1
View of (I) showing 50\% displacement ellipsoids and arbitrary spheres for the H atoms.

Figure 2
Unit-cell packing in (I), with all H atoms except H1 omitted for clarity and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions indicated by dashed lines. Atoms with an asterisk $(*)$ are generated by the symmetry operation $(x, y, z+1)$.

We thank the EPSRC National Crystallography Service (University of Southampton) for data collection.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Antolini, L., Goldoni, F., Iarossi, D., Mucci, A. \& Schenetti, L. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1957-1961.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. \& Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Opletalova, V. \& Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xu, F., Chen, Z., Zhang, F., Wang, R.-J. \& Zhao, F. (2005). Acta Cryst. E61, o1672-o1673.
Yathirajan, H. S., Sarojini, B. K., Bindya, S., Narayana, B. \& Bolte, M. (2006). Acta Cryst. E62, o4046-o4047.

[^0]: © 2006 International Union of Crystallography All rights reserved

